A Kaplansky Theorem for JB$^*$-Algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A proof of the Russo–Dye theorem for JB∗-algebras

We give a new and clever proof of the Russo–Dye theorem for JB∗-algebras, which depends on certain recent tools due to the present author. The proof given here is quite different from the known proof by J. D. M. Wright and M. A. Youngson. The approach adapted here is motivated by the corresponding C∗-algebra results due to L. T. Gardner, R. V. Kadison and G. K. Pedersen. Accordingly, it yields ...

متن کامل

Absolutely Continuous Representations and a Kaplansky Density Theorem for Free Semigroup Algebras

We introduce notions of absolutely continuous functionals and representations on the non-commutative disk algebra An. Absolutely continuous functionals are used to help identify the type L part of the free semigroup algebra associated to a ∗-extendible representation σ. A ∗-extendible representation of An is regular if the absolutely continuous part coincides with the type L part. All known exa...

متن کامل

Kaplansky Theorem for Completely Regular Spaces

Let X,Y be realcompact spaces or completely regular spaces consisting of Gδ-points. Let φ be a linear bijective map from C(X) (resp. C(X)) onto C(Y ) (resp. C(Y )). We show that if φ preserves nonvanishing functions, that is, f(x) 6= 0,∀x ∈ X, ⇐⇒ φ(f)(y) 6= 0,∀ y ∈ Y, then φ is a weighted composition operator φ(f) = φ(1) · f ◦ τ, arising from a homeomorphism τ : Y → X. This result is applied al...

متن کامل

CHEBYSHEV SUBALGEBRAS OF JB-ALGEBRAS

In this note, we characterize Chebyshev subalgebras of unital JB-algebras. We exhibit that if B is Chebyshev subalgebra of a unital JB-algebra A, then either B is a trivial subalgebra of A or A= H R .l, where H is a Hilbert space

متن کامل

Geometric Unitaries in Jb-algebras

In this article, we study geometric unitaries of JB-algebras (in particular, self-adjoint parts of C∗-algebras). We will show that the geometric unitaries of a JB algebra are precisely those central algebraic unitaries (or central symmetries). We will also show that the group of surjective isometries on a JB-algebra A (with point-norm topology) is the semi-direct product of the canonical action...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 1998

ISSN: 0035-7596

DOI: 10.1216/rmjm/1181071749